Ecosystem Restoration

SUPPORT FOR ECOSYSTEM RESTORATION

Table of Contents

- Ecosytem Restoration and the Provision of Ecosystem Services for Sustainable Development
- Ecosystem restoration for water supply
- Ecosystem restoration for health and waste management
- Ecosystem restoration for food security
- Ecosystem restoration for climate change mitigation
- How to capture the value of Ecosystem Services? Ecosystem Services and Economic Decision Making
- Monetary valuation of the environment
- Cost Benefit Analysis

Reasons for Ecosystem Restoration

- Ecosystems deliver essential services to humankind
- Estimated to be worth over USD 72 trillion a year – comparable to World Gross National Income.
- In 2010, nearly two-thirds of the globe's ecosystems are considered degraded as a result of damage, mismanagement and a failure to invest and reinvest in their productivity, health and sustainability.

Ecosystem Restoration and the Provision of Ecosystem Services

- The services humankind receives from ecosystems include:
- regulation of water supplies and water quality;
- maintenance of soil fertility;
- carbon sequestration;
- climate change mitigation; and
- enhanced food security.
- Socio-economic benefits (poverty reduction, tourism, etc.)
- **Provision** of these services dependent upon **proper functioning** of ecosystems.
- Conservation of **biodiversity** is recognized as important due to the role biodiversity plays in **underpinning** many of ecosystem services which humans depend upon for their well-being.

Ecosystem restoration for water supply

- Forests play key role in global water supply
- 75% of globally usable freshwater supplies come from forested catchments.
- Mountain regions all over the planet are crucial water towers.
- Forests crucial for flow regulation, water quality, and in hindering flash-foods from water originating in mountains or in extreme rainfall events
- Forests also have a key function in climate regulation through influencing weather and rainfall, as well as in capturing rain- and mist water in cloud forests and filtering water

Ecosystem restoration for health and waste management

- Wetlands, river deltas, lakes and marshes play a crucial role in:
 - > **sedimentation** of pollutants and organic matter;
 - > serving as important filters for **pollutants**.
- Restoration of wetlands to help **filter** certain types of wastewater can be a highly viable solution to wastewater management challenges.

Average concentrations of nitrate in European groundwaters and surface waters (1992-2008)

Ecosystem restoration for food security

- Continuous loss of ecosystems services at current rates through
- land degradation
- reduced amount of water for irrigation
- nutrient depletion
- declining pollination
- lower natural pest control such as of invasive species
- seriously jeopardize world food production and depress required production by up to 25% by 2050

Dry land restoration

http://www.grida.no/graphicslib/detail/degraded-soils_c4c4

Ecosystem restoration for climate change mitigation

- All **living matter** (biomass) from grasses and trees to salt marshes and plankton **stores carbon**
- Terrestrial biomass carbon stocks are often referred to as "green carbon"
- Approximately half of terrestrial biomass carbon stocks are found in forests
- The **oceans and coastal vegetation** also store a large amount of carbon, often known as "**blue carbon**"

Ecosystem restoration for climate change mitigation

- Potential of ecosystems especially forests to take up additional carbon
- Process is disrupted when natural ecosystems are converted for agricultural use
- Restoration of ecosystems protects and enhances the climate regulating services of ecosystems as well as the carbon stocks that aid climate change mitigation
- Many ecosystems are currently carbon sinks (they store more carbon than they lose)
- **Forests**, typically the most carbon-dense terrestrial ecosystems, often receive most attention in climate policy
- **Wetlands and peatlands** are rich in carbon. Peatlands, although forming only 3% of the world's land surface, contain 30% of all global soil carbon

 Economics is about efficient allocation of scarce **resources** with diverse alternative uses Can provide insight into desirability of incurring environmental costs and benefits given objective of increasing "satisfaction"/social welfare

conservation

Value of Nature

Ways in which ecosystem services support people's consumption and provide Intangible human benefits used to assess values of ecosystem services

Use Value: • Direct Use Value (direct consumption of primary goods): e.g. fruits, fuel-wood, forage and developed recreation

- Indirect Use Value (secondary goods and services): e.g. wildlife habitat, climate mitigation and erosion control
- **Option Value** (future consumption of goods and services): e.g. biodiversity, agricultural or pharmaceutical applications

Existence Value (no consumption of goods and services): biodiversity, heritage, aesthetic, cultural, religious and bequest values

Source: TEEB, 2008

Economic Valuation

- Market Prices
- Travel Cost Method
- Contingent Valuation (WTP/WTA)
- Hedonic Pricing
- Choice Modelling
- Production-function-based Techniques
- Replacement Cost Method
- Etc.

Example:

Source: UNEP, 2010; Millenium Ecosystem Assessment, 2005

Source: Source: EM-DAT, The International Disasters Database, CRED, 2009

Different estimated price ranges to restore certain types of ecosystems

Ecosystem restoration cost ranges

Thousands Euro per hectare (logaritmic scale)

Source: TEEB, The Economics of Ecosystems and Biodiversity for National and International Policy Makers, 2009.

Cost Benefit Analysis

- ➤ Benifts Costs = Revenue
- > Benefits: e.g. Market price for the product
- > Costs: e.g. Production costs and marketing costs
- Use over a specific time period (use of discount rate r)

$$W = \frac{a_1}{(1+r)} + \frac{a_2}{(1+r)^2} + \dots + \frac{a_i}{(1+r)^i} + \dots + \frac{a_n}{(1+r)^n} + \frac{R_n}{(1+r)^n} \ge A$$

$$NPV = \sum_{i=1}^{n} \frac{\alpha_i}{(1+r)^i} + \frac{R_n}{(1+r)^n} - A$$

50-year	Annual	Present value	
forward	discount	of future	
cash flow	rate %	cash flow	
1,000,000	4	140,713 371,528 608,039	
1,000,000	2		
1,000,000	1		
1,000,000	0.1	951,253	
1,000,000	0	1,000,000	

Criticism

- Problem of **discount rate** (which r?)
- →Use of discounting improperly trivializes future harms
- Profit from extraction made in short term,
 environmental benefits made in long run
- Irreversibility of some environmental problems
- Who carries the costs and who benefits?
- Criticism on monetary valuation

Estimates of costs and benefits of restoration projects in different biomes

Biome/ Ecosystem	Typical cost of resto- ration (high scenario)	Est. annual benefits from restoration (avg. scenario)	Net present value of benefits over 40 years	Internal rate of return	Benefit/cost ratio
	USD/ha	USD/ha	USD/ha	%	Ratio
Coral reefs	542,500	129,200	1,166,000	7%	2,8
Coastal	232,700	73,900	935,400	1196	4.4
mangroves	2,880	4,290	86,900	4096	26.4
inland wetlands	33,000	14,200	171,300	1296	5.4
Lakes/rivers	4,000	3,800	69,700	2796	15.5
tropical forests	3,450	7,000	148,700	50%	37.3
other forests	2,390	1,620	26,300	2096	10.3
Woodland/shrubland	990	1,571	32,180	42%	28.4
Grasslands	260	1,010	22,600	79%	75.1

Source: TEEB, 2009; UNEP, 2011

Exercise

• Discuss the feasibility of TEEB-like studies in your countries, regions - How would it support the inclusion of biodiversity in your national policies?

