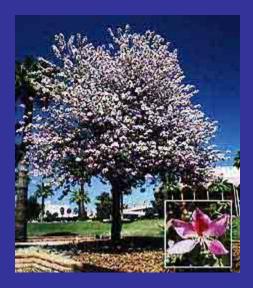
MICROBIAL GENETIC RESOURCES FOR FOOD AND AGRICULTURE -INTERDEPENDENCE-

Side event – ABS 9 Cali, Colombia March, 2010

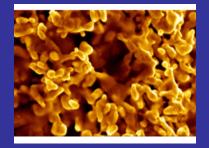
TSBF) Institute - CIAT

Maria Jose Amstalden Sampaio

TSBF - CIAT



PLANT AND ANIMAL GENETIC RESOURCES FOR FOOD AND AGRICULTURE HAVE A RELATIVELY WELL KNOWN ORIGIN


NATIVE GENETIC RESOURCES

EXOTIC GENETIC RESOURCES

MICRORGANISMS : HABITATS

Plants

Bacteria in gold grains

Marine

Bacteria and archaea in hydrothermal environment

Soil

Associations with animals

MICRORGANISMS – HOW MANY ?

Abundance of soil organisms

	Number	Biomass ¹
Organism	per gram soil	(lbs per
	(~1 tsp)	acre 6")
Earthworms	althe Carlo - Stan Park	100 – 1,500
Mites	1-10	5 – 150
Nematodes	10 – 100	10 – 150
Protozoa	up to 100 thousand	<mark>20 – 200</mark>
Algae	up to 100 thousand	10 – 500
Fungi	up to 1 million	1,000 – 15,000
Actinomycetes	up to 100 million	400 - 5,000
Bacteria	up to 1 billion	400 – 5,000

¹ Biomass is the weight of living organisms

29 COLLECTIONS WITH AROUND 30,000 SPECIMENS

ENVIRONMENTAL USE

FUNGI AND BACTERIA FROM INVERTEBRATES

ENTOMOPATHOGENIC MICRORGANISMS

PHYTOPATHOGENIC MICRORGANISMS

DIAZOTHROPHIC BACTERIA

ANIMAL DESEASES

VIRUS

Culture Collection holdings world wide

Continent	Collections	Strains
Africa	11	12 255
Asia	177	322 195
Europe	173	1 005 930
America	121	326 297
Oceania	43	89 786
	525	1 756 463

World Data Centre for Microorganisms (WDCM) http://wdcm.nig.ac.jp

WFCC position on Access and benefit sharing <u>http://www.wfcc.info/NEWSLETTER/GG</u> <u>TSPUstyx2</u>. bba.de-31757-6599860-DAT/WFCC-NL-January-2009.pdf

INTERDEPENDENCE FOOD INDUSTRY

Lactobacillus bulgaricus Streptococcus thermophilus

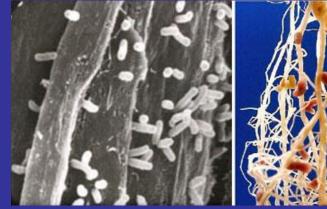
Lentinula edodes

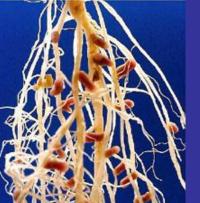
Penicillium roquefortii

Saccharomyces cerevisiae

AGRICULTURE -DIFFERENT PROCESSES

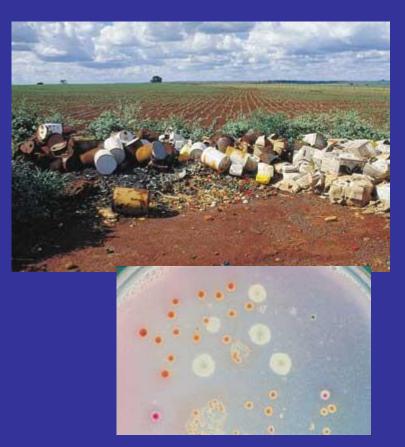
BIOLOGICAL CONTROL


NUTRIENT ABSORTION Mycorriza ROOTS



Metarhizium anisopliae

Cordyceps sinclairii



NITROGEN FIXATION

Rhizobium

ENVIRONMENT BIORREMEDIATION

DEGRADATION OF OF ENVIRONMENTAL POLLUTANTS (PESTICIDES) BY FUNGI AND BACTERIA

PLANT AND ANIMAL HEALTH QUARANTINE EFFORTS TO CONTROL PESTS

Citrus desease (X. fastidiosa)

AFTOSA

Orange Rust Sugar Cane

Citrus desease (X. axonopodis)

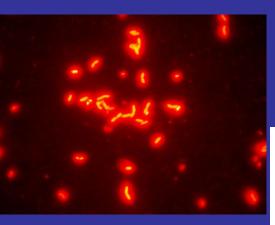
GLOBAL INTERDEPENDENCE TO DEVISE METHODS OF DIAGNOSTICS AND CONTROL

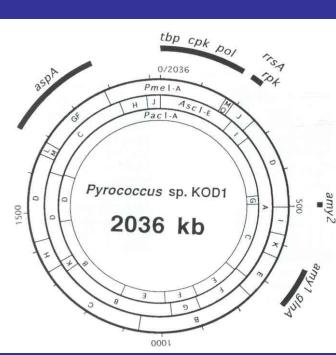
COMPLEX INTERNATIONAL FRAMEWORK TRADE BARRIERS TO GLOBAL COMMERCE NON TRADE BARRIERS - SAFETY

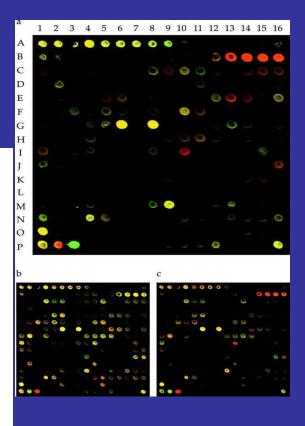
GROWING APPLICATIONS

INOCULANTS FOR FEED STOCKS

BIOFUEL PRODUCTION (fermentation)

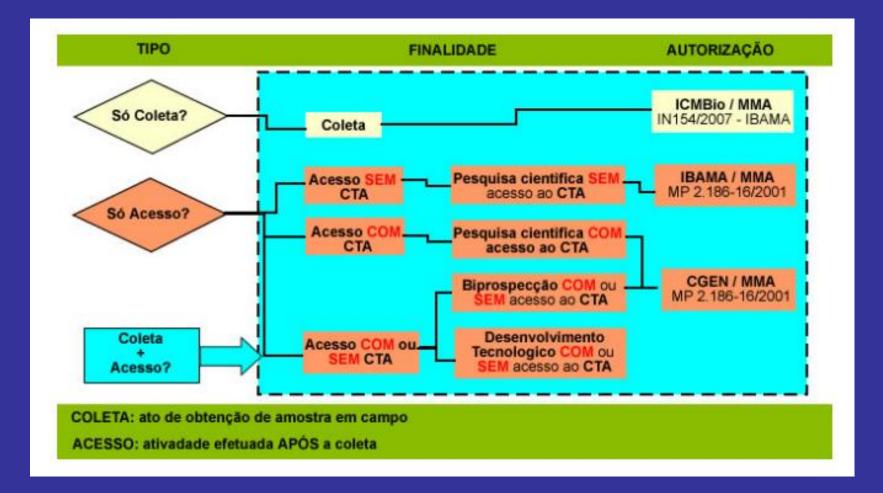

BIOMASS CONVERTION – ENERGY (e.g. BIOGAS)


INDUSTRIAL USE IN MORE NATURAL AND SUSTAINABLE PROCESSES - ENGINEERED "BUGS"


"ADVANCED" APPLICATIONS BIOTECHNOLOGY

CLONING VECTORS / TRANSFORMATION / EXPRESSION VECTORS (biofactories)

METAGENOMICS DNA SHUFFLING – NEW FUNCTIONAL DNA SEQUENCES NOT FOUND IN NATURE



INTERDEPENDENCE ON INFORMATION GENOME SEQUENCES AND PROTEOMICS PUBLIC DATA-BASES

Autorization to collect ≠ Autorization to access and developed research (basic & bioprosp)

QUESTIONS FOR POLICY MAKERS

• COUNTRY OF ORIGIN DEFINITION APPLIED TO MICRORGANISMS

> Who owns a "bug" ??? BEFORE AND AFTER 92 ? SAME SPECIES OF MICRORGANISMS FOUND IN MANY COUNTRIES ? – DIFFERENT STRAINS

CULTURE COLLECTIONS – outside the collecting territory

• IN SITU CONDITIONS DEFINITION APPLIED TO MICROORGANISMS

> IS IT THE SOIL OR THE WATER OF A GIVEN COUNTRY ?? IS IT THE ANIMAL GUTS ?? When the animal is an exotic breed ? IS IT THE PETRI DISH IN A LAB ? (microbes have a different life span !)

• BENEFIT SHARING CHAIN FOR "NATIVE" MICRORGANISMS AND FOR IMODIFIED MICRORGANISMS

A PRACTICAL CASE SOIL IMPROVEMENT IN AFRICA NITROGEN FIXATION PROGRAM

BRAZIL CULTIVATES SOYBEAN, BEANS AND FAVA BEANS EMBRAPA DEVELOPS RESEARCH ON NITROGEN FIXATION SINCE THE 70'S BRAZILIAN SOYBEAN IS MOSTLY PRODUCED WITHOUT NITROGEN ADDITION WHAT SAVES MONEY AND IS GOOD FOR THE ENVIRONMENT !

TWO YEARS AGO – THE GATES FOUNDATION PROPOSED TO TAKE THE TECHNOLOGY TO AFRICAN COUNTRIES RESPONDING TO THEIR REQUEST **The Official Launch Of The Biological Nitrogen Fixation (BNF) Project At Safari Park Hotel, Nairobi, On 20th January 2010** TEST BRAZILIAN IMPROVED VARIETIES OF SOYBEANS AND OTHER BEANS TEST WELL KNOWN NITROGEN FIXING MICROORGANISMS ADAPTED TO BRAZILIAN SOILS IN SIMILAR CONDITIONS ORGANIZE LOCAL RESEARCH TO COLLECT, STUDY AND DEVELOP INOCULANTS WITH LOCALLY COLLECTED STRAINS TO CHECK IF THEY ARE BETTER ADAPTED AND MIGHT PRODUCE BETTER RESULTS (PROBABLY DONE BY EMBRAPA AND PRIVATE COMPANIES)

BIOLOGICAL NITROGEN FIXATION

The project is supported by a grant (39 million -4 years) from the Bill & Melinda Gates Foundation and will draw on expertise from a large number of research and development specialists from Africa, Australia, Europe and Brazil. Under the project state-of-the-art legume and rhizobial inoculant technologies will be used by African smallholder farmers to triple the inputs of free atmospheric nitrogen by Biological Nitrogen Fixation (BNF), and thereby improving crop and livestock productivity, human nutrition and farm income, while enhancing soil health.

PROJECT WITH GATES RULES – NO IP APPLIED TO TARGET COUNTRIES

THANK YOU

zeze.sampaio@embrapa.br

HOW FAR BACK IN BENEFIT SHARING WITH THE NECESSARY LEGAL CERTAINTY ?????